
USER MANUAL

Supplyframe, Inc.

Revision 4a
Nov-11-2022

Button Commands

Supplyframe, Inc. 2

Oper Y

Oper Y

Oper Y

Oper Y

Direct
Operand Y
(bits 3-0)

Flash
portion

select for
Save /
Load

Display
Page
select

Display
Page
select

Direct
Operand Y
(bits 3-0)

Direct
Operand Y
(bits 3-0)

OPER Y

Oper X

Oper X

Oper X

Oper X

Direct
Operand

X or
Opcode
(bits 7-4)

Baud
Rate
select

Processor
Clock
select

Direct
Operand

X or
Opcode
(bits 7-4)

Direct
Operand

X or
Opcode
(bits 7-4)

OPER X

Opcode

Opcode

Opcode

Opcode

Instruction
Opcode

(bits 11-8)

Dimmer
level
select

User
Sync
select

Instruction
Opcode

(bits 11-8)

Instruction
Opcode

(bits 11-8)

OPCODE

Master
Clock
source

RUN
Program

From
Program
Memory

Write 12-bit
word to
Program
Memory

and inc PC

Clock

Step

Run

Dep +

Execute
one

instruction

Address
set from
Opcode,

Operand X
and

Operand Y

Load
Program
Memory

from
Serial Port

Increment
Program
Memory
Address

Load

Addr +

Break

Addr +

Load
Program
Memory

from
selected

Flash

Increment
Program
Memory
Address

Preset
Program
Memory

Address to
the last

word used

Terminate
Program

Execution

COMMAND KEYS

Send
Program

Memory to
Serial Port

Decrement
Program
Memory
Address

Save

- Addr

Pause

- Addr

Save
Program

Memory to
selected

Flash

Decrement
Program
Memory
Address

Reset
Program
Memory
Address
to 0x000

Program
Execution
Pause /
Resume

Address
set from
Opcode,

Operand X,
Operand Y

Historry

AddrSet

Enter
History

submode

On/Off
Toggle 10×

Faster
Clock and

Sync

Toggle
Carry
Flag

Carry

Fast

M
O

D
E

D
IR

S
S

R
U

N
P

G
M

A
LT

A
LT

A
LT

A
LT

Gray = ALT key pressed

Processor
Clock
select

User
Sync
select

ALT+Both
Keys
Pressed

Reset Page
and Pgm
Memory
Address
to 0x000

Duplicate the
current word

(move all
subsequent
words up)

Clear All Memory

Preset
Program

Mem Address
 to the last
word used

Delete the
current word

(move all
subsequent

words down)

Toggle
Carry
Flag

ALT DIR

SS

RUN

PGM

CARRY

HISTORY

FAST

ADDR SET

MODE

SAVE

--

PAUSE

--

LOAD

+

BREAK

+

ADDR

ADDR

CLOCK

STEP

RUN

DEP+

STACK

OPCODE OPERAND X OPERAND Y

PC2 1 0 11 10 9 8 7 6 5 4 3 2 1 0 3 2 1 0

8 4 2 1
---- -

8 4 2 1
---- -

8 4 2 1
---- -

DATA IN

BIN

SEL

SYNC DIR: DIM CLOCK DIR: BAUD PAGE DIR: FLASH

8-bit opcode

ADD

ADC

SUB

SBB

OR

AND

XOR

MOV

MOV

MOV

MOV

MOV

MOV

MOV

JR

RX,RY

RX,RY

RX,RY

RX,RY

RX,RY

RX,RY

RX,RY

RX,RY

RX,N

[XY],R0

R0,[XY]

[NN],R0

R0,[NN]

PC,NN

NN

CP

ADD

INC

DEC

DSZ

OR

AND

XOR

EXR

BIT

BSET

BCLR

BTG

RRC

RET

SKIP

R0,N

R0,N

RY

RY

RY

R0,N

R0,N

R0,N

N

RG,M

RG,M

RG,M

RG,M

RY

R0,N

F,M

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

OUT

IN

JSR

PCL

PCM

PCH

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

GND

SAO G 3 2 1 0 3 2 1 0 G V Res

PAGE+1 PAGE

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3V Rx

Tx

1

0

T R TU

I N I C S P

O

+ ++++ + ++++ + ++++

V Z C

ACCU IN

1st OPERAND

2nd OPERAND SOURCE

DEST

C C C
Cin

3 2 1 0

CLK

CLK

ACCUMULATOR
PAGE

OPCODE

Cout

SUM

OR

AND

XOR

IN

TMP

OUT

C

DATA
INV

Cin
ENA

FULL
ADDER

4

V

Indicators, buttons and connectors

2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25

1. STATUS register, with V (oVerflow), Z (Zero) and C (Carry) flags
2. Flag Logic, which generates signals for flags
3. Data Buffer/Inverter, switched by Carry Logic (7) and used for Adder/Subtractor
4. Operands, represented and indicated as inputs to ALU unit
5. Arithmetic unit (4-bit Full Adder / Subtractor) as a part of ALU unit
6. Logic unit (4-bit OR / AND / XOR gates) as a part of ALU unit
7. Carry Input Logic (used for Data and Carry Inversion in case of subtraction)
8. Opcode Decoder output (also used as interactive Code Disassembler)
9. Operand X Decoder output (also used as interactive Code Disassembler)
10. Operand Y Decoder output (also used as interactive Code Disassembler)
11. SAO (”Shitty Add-On”) connector, with Ground, +3V and UART Rx/Tx pins
12. I/O connector, with Input and Output ports and PIC MCU Programming pins
13. LED Matrix which displays two pages (2×16 nibbles) of Data Memory

1

14. Three-bit Stack Pointer indicator
15. ALT button, which switches some indicators and buttons to alternate functions
16. MODE button, used to switch between Direct/Single Step/Run/Program mode
17. Command Group of buttons, with Mode-specific fuctions
18. Program Memory Address pointer (a.k.a. Program Counter, PC)
19. Opcode buttons and indicators (instruction bits 11-8)
20. Symbolic representation and indicators for Accumulator register
21. Page register, determines which page of Data Memory is shown on LED matrix
22. Master Clock signal inverter, used for Master-Slave Flip-Flops triggering
23. Operand X buttons and indicators or Opcode extension (instruction bits 7-4)
24. Operand Y buttons and indicators (instruction bits 3-0)
25. Data In Select button and indicator, switches between Binary and Select mode

Supplyframe, Inc. 3

Indicators, buttons and connectors

 On-Off Button

This is the only button that does not initiate the command execution when it is pressed, but it
modifies the functions of other buttons and some indicators. It should be used similarly to the Alt
button on the computer’s keyboard, which means that it should be pressed prior to the button which
function should be modified. The main Alt-functions of other buttons is printed under the button bar,
and it is depended on the mode selected. Here is the function of buttons in the Opcode, Operand X
and Operand Y fields, with the original and modified function in different modes:

 ALT Button (15)

The only button available at the bottom side is the On-Off button. Switching On-Off is possible
in every mode, and also when the user’s program is running. In the Off state, clock signal is halted,
the system processor is in Sleep mode and all outputs on the I/O connector (12) are in the high-
impedance state. However, there are pull-up resistors on all inputs and pull-down resistors on all
outputs. The only exception is the serial Tx output, which does not have not pull-down, but pull-up
resistor, as the default level of Tx is high. The resistance of every pull-up and pull-down is 22KΩ.

Switching the unit Off does not affect processor’s registers or contents of memory or program
state, so when the unit is turned On again, it will continue the execution as if it wasn’t stopped at all.

MODE

DIR

SS

RUN

PGM

OPCODE buttons
and indicator bar

OPERAND X buttons
and indicator bar

OPERAND Y buttons
and indicator bar

Original ALT pressed Original ALT pressed Original ALT pressed

Opcode Operand X Operand YDimmer Baud rate Flash Addr

Opcode Operand X Operand YSync Clock Page

Opcode Operand X Operand YSync Clock Page

Sync Clock Page

2. SELECT Method

 DATA IN Button and Indicators (25)

Used for Data Input Method selection, which affects button groups Opcode, Operand X and
Operand Y. The same Data Input Method selection is valid for ALT-functions of the three groups
(Sync, Clock, Page, Dimmer, Baud Rate and Flash Address). Every press of the Data In button
toggles between the two methods, and the current method is displayed on the BIN/SEL indicators.

In the Binary method, every buttons simply toggles the corresponding bit state of the
4-bit selection register, displayed by four indicator above the buttons (Most Significant Bit,
marked by “8”, is at the left). At the same time, the 16-step indicator bar displays the
decoded binary state of the selection register.

Here is the description of the two available methods:

1. BINARY Method

Buttons “-” and “+” are used to decrement and increment by one the 4-bit binary
state of the 4-bit selection register. Buttons “----” and “++++” can be used to decrement
and increment the state of the same register by four, which can be used to speed up the
selection.

Supplyframe, Inc. 4

Indicators, buttons and connectors

Opcode (abbreviated from operation code) is the portion of a machine language instruction
that specifies the operation to be performed. In this case, the opcode is always located at the most
significant bits of the 12-bit instruction word: bits 11-8 or bits 11-4.

The main code fields are Opcode and Operands. The typical instruction contains one opcode
and a flexible number of operands.

Before we start with the Opcode and Operand fields, just a few words about the bit coding
fields inside the instruction word. As the unit is supposed to be programmed directly in a machine
language (binary code, ones and zeros), special care was taken to simplify the structure of the
instruction codes and pack the bit fields in 4-bit groups which are easy to perceive and remember.

 Preface: Bit coding

Operands are values assigned to registers or memory and they are specified and accessed
using more or less complex addressing modes. Here we have instructions which contain one or two
operands (but note that there are processors which support more or zero operands). Generally,
Operands contain data, and Opcode tells the processor what to do with the data.

8+1=9

INSTRUCTION: 1001 0010 0111

MOV R2, 7

AFTER EXECUTION: R2=7

OPCODE OPERAND 1 OPERAND 2

BIN MODE:

Decoded state is displayed
on the DECODER column

Every press on the button
flips the LED state:
0 (LED off) or 1 (LED on)

SEL MODE:

Buttons Minus (-) and Plus (+) are
used to decrement or increment
(move up or down) the decoded
output. Buttons (----) and (++++) do
the same, skipping 4 values at once

Binary state is displayed on
the binary row

4+2+1=7

Supplyframe, Inc. 5

Indicators, buttons and connectors

Supplyframe, Inc.

 Let’s see how the instruction is organized internally. In this processor, every instruction
has the same length, which is 12 bits. Opcode and operands may be located in any part of the
instruction code, but in our case, for clarity and ease of programming, the opcode always contains
four or eight bits and it is located in the leftmost part of the 12-bit instruction word (highest order
bits), and operand or operands are in the rightmost eight or four bits:

x x x xx x x x x x x x

OPCODE OPERAND X OPERAND Y

OPERAND YOPCODE

x x x x x x x x0 0 0 0

x = bit 0 or 1

OPCODE

x x x x x x x x0 0 0 0

RG or F M

Please note that there are several instructions (Bit Test/Set/Clear/Toggle and Skip) with the
Operand Y field split in two 2-bit operands.

If the DATA IN indicator is in the BIN state, Opcode can be entered bit-by-bit, and if it is in the
SEL state, the same buttons are used to move the decoded output up/down by one (buttons “-” and
“+”) or four places (buttons “----” and “++++”).

 OPCODE Buttons and Indicators (19) and decoder (8)

If the opcode is eight bits wide, then the first four bits are always 0000. This way of coding
gives enough space for a total of 15 instructions with 4-bit opcode (0001-1111), and 16 instructions
with 8-bit opcode (00000000-00001111).

Buttons in the field which is conditionally named Opcode are generally used to preset the four
upper (most significant) bits of the 12-bit instruction word. The word in binary form is readable on the
indicators in the Opcode (19) field. The indicator column (8) represents the decoded 4-bit nibble
from the Opcode field, and it has only one LED in ON state. This column can be conveniently used
as the disassembled opcode with the instruction printed next to the LED.

In Single Step and RUN modes, every modification of the Program Memory Address (PC)
will automatically read the contents of the instruction and update the Opcode, Operand X and
Operand Y indicators. You can modify it using buttons, end even execute the new state in SS mode
(by pressing button STEP), but it will not affect the contents of the Program Memory. The only way to
alter the contents of the Program Memory is to press the DEPosit button in PGM mode.

6

Indicators, buttons and connectors

Supplyframe, Inc.

The word in binary form is readable on the indicators in the Operand X (23) field. The
indicator column (9) represents the decoded 4-bit nibble from the Operand X field, and it has only
one LED in ON state. This column can be conveniently used as the disassembled opcode, but the
special care should be taken if the Opcode field contains 0000, as the instruction printed next to the
LED is valid only in that case. In all other cases, the decoded output should be treated as the
register name printed next to the LED matrix field (Data Memory).

OPERAND X Buttons and Indicators (23) and decoder (9)

Buttons and indicators in the OPERAND X group are used to preset the central nibble (bits 7-
4) of the instruction. If the Opcode field contains bits 0000, Operand X field does not represent the
operand anymore, but the extension of the Opcode field.

If the DATA IN indicator is at the BIN state, Operand X can be entered bit-by-bit, and if it is in
the SEL state, the same buttons are used to move the decoded output up/down by one (buttons “-”
and “+”) or four places (buttons “----” and “++++”).

If the DATA IN indicator is at the BIN state, Operand Y can be entered bit-by-bit, and if it is in
the SEL state, the same buttons are used to move the decoded output up/down by one (buttons “-”
and “+”) or four places (buttons “----” and “++++”).

In Single Step and PGM modes, every modification of the Program Memory Address (PC)
will automatically cause reading of the contents of the new instruction and update the Opcode,
Operand X and Operand Y indicators. You can modify it using buttons, end even execute the new
state in SS mode (by pressing button STEP), but it will not affect the contents of the Program
Memory unless you press the DEPosit button in PGM mode.

In Single Step and RUN modes, the function of Operand X buttons and indicators is
modified when the ALT button is depressed. In that case, Clock register is accessible instead of
Operand X register. Clock register is used to adjust the processor speed.

Column (9) contains one extra indicator, which is in the instruction EXR R0,N field. This
instruction exchanges a group of General Purpose and Special Purpose registers from the Page
0 with the equivalent number of nibbles in the Page 14 of Data Memory, and the indicator is flipped
every time when the instruction is executed. So the indicator should be ON only when register
contents are exchanged between Page 0 and Page 14 and OFF when they are flipped back to their
original positions. That couls help keeping track of program execution.

OPERAND Y Buttons and Indicators (24) and decoder (10)

Buttons and indicators in the OPERAND Y group are used to preset the lower nibble (bits 3-
0) of the instruction. The word in binary form is readable on the indicators in the Operand Y (24)
field. The indicator column (10) represents the decoded 4-bit nibble from the Operand Y field, and it
has only one LED in ON state. This column can be conveniently used as the disassembled opcode,
and it is valid for most instructions, but not for instructions Bit Test/Set/Clear/Toggle and Skip,
which split the field which we named as Operand Y in two 2-bit operands. For these instructions,
decoding should be performed manually.

In Single Step and RUN modes, the function of Operand Y buttons and indicators is
modified when the ALT button is depressed. In that case, Page register is accessible instead of
Operand Y register.

In Single Step and PGM modes, every modification of the Program Memory Address (PC)
will automatically read the contents of the instruction and update the Opcode, Operand X and
Operand Y indicators. You can modify it using buttons, end even execute the new state in SS mode
(by pressing button STEP), but it will not affect the contents of the Program Memory unless you
press the DEPosit button in PGM mode.

7

Indicators, buttons and connectors

Supplyframe, Inc.

Data Memory display is visually organized as 16×8 matrix, but it is functionally divided in two
16×4 displays. The right 16×4 half displays the contents of one Data Memory page defined by the
state of the Page register (21), and the left half is for the next one (Page+1). The whole Data
Memory contains 256 nibbles, which gives a total of 16 pages, and if the right half displays the last
page (Page 15), then the left half is wrapped to the beginning of the address space as Page 0. This
enables watching both General Function Registers (on Page 0) and Special Function Registers
(Page 15) at the same time.

LED Matrix (Data Memory) (13) and Page indicator (21)

Page+1 Page

Bit 3 2 1 0 3 2 1 0 Page × 16

Page × 16 + 15

(Page+1) × 16

(Page+1) × 16 + 15

Data Memory display (13) is disabled in DIRect and PGM modes, but in DIRect mode it has
the special function when the ALT button is pressed. Then it displays the occupancy of 16 Flash
Memory blocks, which can help in Flash Memory organization and navigation.

Page is the 4-bit register which is accessible to the user’s program in the Special Function
Register (SFR) group, in the data memory address 0xF0. In modes SS and RUN it can be easily
preset manually, when the ALT button is depressed and the Operand Y buttons are used for Page
contents adjusting.

Master Reset is possible only after the batteries are disconnected and then reconnected, or
when pins G (Ground) and Res (Reset) of the I/O Connector are shortened externally. After any
button is pressed, this data is cleared from the display.

At every program Run, the Page register is reset to 0000. Mode Single Step (SS) has its
own Page register, so if some value was preset in SS mode, it will be kept and restored at every
reentry to the SS mode.

Also, after the Master Reset, Data Memory Display in DIRect mode (which is default after
Reset) shows the Version/Revision/Year/Month/Day numbers or the firmware release at the first
five rows of the LED Matrix. In the middle of the matrix (rows 10 and 11) there is the Checksum of
Program Memory for the Bootloader Segment, and, on the two bottom rows, the Checksum for
the General Segment (main firmware).

Note that Master Reset also clears all Program and Data Memory, but not the contents
saved in the internal Flash.

Data Memory display can be disabled under the program control, if bit 2 (MatrixOff) in the
register WrFlags (Address 0xF3) is set. If bit 3 (LedsOff) in the register WrFlags (Address 0xF3) is
set, all other LEDs will be disabled, only the LED CLK or INVERSE CLK (on the schematic
drawing) will still be ON. These LEDs are the indicator that the unit is in operation (or, if they are
alternatively blinking, that it is running), and they can not be disabled.

Version
Revision
Year
Month
Day

Bootloader
Checksum

Firmware
Checksum

1
5

20
7

12

0xC651

0x3A9E

IN THIS
EXAMPLE

8

Indicators, buttons and connectors

Supplyframe, Inc.

1st and 2nd OPERAND (Input to ALU unit) (4)

This is the first field of the ALU/Accumulator data flow, which is in the core of the processor.
The data indicated in this field actually do not exist as registers, but only displays the input states to
the ALU, and thus makes it easier to follow the process.

There are different rules for different processors, but here the most popular rule is applied. If
there are two operands, then the first one is always the destination (sometimes it's also the source),
and the second one is always the source. So if the instruction is:

that means “Add Arithmetically contents of Register Y to the contents of Register X and write
the result in Register X”.

Some instructions have only one operand. In general case, it is source and destination at the
same time. For instance:

Please note the difference between these pairs of terms:
 “Operand X” - “Operand Y”,
 “1st Operand” - “2nd Operand”, and
 “Source” - “Destination”

 ADD RX, RY

 INC RY

means “Increment the value of Register Y by one and write the result in Register Y”. It’s
obvious that there was an invisible source, which is the literal “1”, added to the Register Y.

Sometimes the destination is hidden as the operand, and you have to know the operation
defined by the Opcode, to know where the result is stored:

 BIT R2, 3

In many cases these pairs of terms will mean the same, but there are also cases when there
is the difference. Operands X and Y are simply operands which are defined in X and Y fields on the
panel, and that’s all. At the other hand, 1st and 2nd operands are just defined by the order of
appearance, and Source and Destination are exactly what these words mean.

Subtracting is actually adding of negative value, so the source operand is inverted. To make it
negative in 2’s complement form, it should be also incremented by one, but the inverse Carry logic
(which is named Borrow) in subtraction process compensates this and always gives the correct
result, even without adding. If there is the Borrow condition (no Carry), then the resulting -1
difference (caused by non-adding 1 at negation) automatically adds Borrow (-1) to the result, and
No Borrow (Carry set) adds 1 and again compensates 2’s complement negation.

This operation tests bit 3 in register R2, so it’s the single bit source, but where is the
destination? In this instruction, it is the single bit destination, Flag Z. To make it more complicated, if
bit 3 in register R2 is 0, the resulting flag Z will be 1, and vice versa. But it makes more sense when
we know that Z (Zero) Flag is set (1) when the result of the operation is Zero (0).

Adder/Subtractor is used not only for Add and Subtract instructions (with or without Carry or
Borrow), but also for CP (Compare) instruction. Compare is actually same as Subtract, but the
result is not written anywhere but lost, only the flags are preserved.

It is clear that it is not easy to define the operands precisely, so the representation of input
signal to the ALU will sometimes be inaccurate. Also, captions “DEST” and “SOURCE” next to the
indicators are only roughly informative.

Arithmetic unit performs adding and subtracting operations either with unsigned positive, or
Two’s complement signed (either positive or negative) binary numbers. “Full” Adder means that it
not only adds bits, but also processes Carry (C) bit. So every bit stage has three inputs (A, B and
Carry from the previous stage) and two outputs (Sum and Carry to the next stage). The Carry input
of the LSB (Least Significant Bit) is the global Carry input to the adder, and the output from the
MSB (Most Significant Bit) is the global Carry output.

4-bit Full Adder / Subtractor (5)

9

Indicators, buttons and connectors

Supplyframe, Inc.

Adding and subtracting of longer (unsigned positive or signed negative or positive) numbers is
performed in serial manner, using Carry/Borrow bit for linking. This is the example how to add or
subtract two 16-bit numbers, wether they are unsigned positive or signed negative or positive. If one
number is in registers R0, R1, R2 and R3, and the another one in R4, R5, R6 and R7, after this
addition (or subtraction) the result will be in R0, R1, R2 and R3:

In a few words, signed numbers in the 2’s complement math are represented so that MSB
(leftmost bit) is the sign (”0” for “+”, “1” for “-”), and all other bits follow the 2’complement rule
(inverted bits plus 1). So there is one bit less for the number representation, as the range for the 4-
bit signed number is -8 to +7 (for the 8-bit number, it would be -128 to +127), but everything else is
quite simple: adding and subtracting can be performed in the same adder/subtractor hardware!

 Addition: ADD R0, R4 Subtraction: SUB R0, R4
 ADC R1, R5 SBB R1, R5
 ADC R2, R6 SBB R2, R6
 ADC R3, R7 SBB R3, R7

Note that the first operation is without Carry (or Borrow), and all others are with Carry (or
Borrow). This method can be used to add or subtract numbers of any length.

The example uses the Little Endian notation (Least Significant nibbles are written in the
lower address of memory or register file). The principle is the same for Big Endian notation (Most
Significant nibbles on low addresses, Least Significant on top), but the order of registers would be
reversed (ADD R3, R7, then ADC R2, R6, and so on). Lowest bits are always processed first.

The same technique is applicable for adding or subtracting of signed numbers of any length.
The rule is that there is only one Sign bit for the number of any length, always at the MSB location of
the Most Significant nibble.

For the unsigned binary numbers, the global Carry (or Borrow) bit for the result is available
after the last ADC (or SBB) instruction. If the Carry Flag is set, that means that the addition has
overflowed and the result can’t fit the register width. For subtraction, the outcome is reversed: No
Carry (which means Borrow Set) means that the result has overflowed (the correct word here is
Underflowed) and thus not usable.

This was valid for unsigned numbers, but for signed numbers Carry Flag outcome has no
meaning, but the V (Overflow) Flag is used instead. So if V Flag is set, the result has overflowed or
underflowed (can not be represented in the existing register) and it is not usable.

V Flag has no meaning for the unsigned numbers, so it is not frequently used. That’s why it
is not present as a condition in the SKIP instruction, but it is available and can be tested (using the
instruction BIT RG, M) in the SFR (Special Function Register) named RdFlags, bit 1. The Special
Function Register RdFlags is at the Data Memory address 0xF3.

Overflow Flag (V) is generated in the adder/subtractor hardware circuit in a very simple way:
if the Carry Input to the last Adder bit and the Carry Output from the same adder bit are different,
the Overflow Flag is set, and that’s all. So the single XOR circuit does the whole task, and it is just
another example of the simplicity and beauty of the adder/subtractor circuit.

IN A 2

IN B 2

SUM 2

IN A 3

IN B 3

SUM 3

IN A 0

IN B 0

SUM 0

IN A 1

IN B 1

SUM 1

Carry Out

Overflow

Carry In

1st OPERAND

2nd OPERAND

It’s amazing to learn about the theory of operation of the binary adder/subtractor. Two’s
complement binary math sometimes looks like magic, when everything turns simple with inverting
and negating binary numbers and processing them always in the same adder/subtractor hardware.
The Carry logic not only “works” for adding and subtracting, but also for signed numbers
processing in the same hardware.

10

Indicators, buttons and connectors

Supplyframe, Inc.

This is the simple logic circuit which inverts Carry logic level and Data Bus signals for
subtraction, and leaves them unchanged (true logic) for addition. Also, it switches off the Carry input
signal (forces it to Low for addition, or High for subtraction) in the operations which do not process
Carry input signal (ADD, SUB and CP).

Carry Input Logic (7) and Data Buffer/Inverter (3)

Previous
Carry

Logic unit (4-bit OR / AND / XOR gates) (6)

This is the second part of the ALU unit, where logic instructions are performed. Its structure is
quite straightforward, but several facts should be noted before we finish the description of ALU.

Due to the lack of space on the panel, the schematic of ALU circuit is simplified. One of the
circuits that is missing is the complex part of the instruction decoder, which selects not only the result
from the adder or some of logic outputs (OR, AND or XOR), but also the data path from Data
Memory to the Accumulator inputs, the I/O data path, SFR logic and so on. The vast majority of the
circuits are not represented, simply because it would, even in the simplest possible project, require
the panel to be the size of the average table surface, with thousands of gates and many indicators.

Logic XOR circuit, which is at the input of the Adder and which generates Cin signal, simply
inverts the Carry signal if the Carry In Invert =1, and serves as a single buffer (which does not
modify the signal level) if Carry In Invert =0. The same is valid for all DATA signals in the internal
DATA BUS (there is only one representation of the Data Bus XOR circuit on the panel schematics).
So both Carry and Data are inverted if the instruction involves Subtraction.

Also, the ALU circuit is not optimized, but drawn so that it is clear and straightforward. The real
ALU circuit in the microprocessor looks much less familiar and hard to follow and understand at the
first sight, as the number of gates is minimized.

One more thing which is different in modern processors is the Carry Generator logic. This
“serial” approach works correctly, but it slows down the operation of the processor, due to the
propagation delays on the long path, through many gates from the Carry Input to the Carry Output.
Note that there is also (but not represented here) the Fast Carry Generator, which works in parallel
mode and thus requires more gates, but has much lower propagation delay.

D3

D3

D2

D2

D1

D1

D0

D0

Adder Carry In

Carry In
Enable

Carry In
Invert

SUB, CP

SBB

ADC

D3

D3

D2

D2

D1

D1

D0

D0

Adder Carry In

D3

D3

D2

D2

D1

D1

D0

D0

Adder Carry In

(Carry In Invert) = 1

(Carry In Invert) = 0

11

Indicators, buttons and connectors

Supplyframe, Inc.

Accumulator (20) and Master Clock Signal Inverter (22)

The first thing that should be noted is that there is not one, but 16 Accumulators in this
processor, and they are named as Registers R0-R15. So it’s good to imagine them as 16 layers of
the accumulator schematics, and only one is selected and visible, depended which register is the
destination one.

Please note that some instructions need no accumulator, as the destination may be the Data
Memory nibble, Program Counter, or even a single bit (Flag) in the Status Register.

 The accumulator contains a series of four Flip-Flops, not a simple ones, but Master-Slave
Edge-Triggered D Flip-Flops.

Data In

Clock

Data Out
LOCKED

LOCKED

LOCKED

Clock

Master Out

Slave Out
MASTER SLAVE

PHASE 1

PHASE 2

(Enable High)

Of course the best way would be to have the full schematics with 16 Accumulators, but the
available space on the panel allows only one. It must be switched with every new instruction, so that
it displays the logic states of the register or memory location which is the current destination, and it
may cause the unexpected switching of the output logic states of the Accumulator. For instance,
when the button Step is first depressed in Single Step mode, the input logic states are transferred to
the Temporary Outputs (outputs of Master Flip-Flops), but when the button is released, the same
logic states would normally appear on Accumulator Outputs. However, the new instruction is read
from the Program Memory, possibly with the new destination, and now the Accumulator represents
the new register. That's why its logic states were unexpectedly changed.

In the first phase of the Clock signal on the Master-Slave Edge-Triggered D Flip-Flop
schematics, when the Clock signal is High (in Single Step or Direct mode, it’s when the button Step
or Clock is pressed), the first Flip-Flop is in transparent state (unlocked). When the Clock logic
level is changed to Low, the first Flip-Flop (the Master one) latches the Data logic level and the
second (Slave) Flip-Flop is in transparent state. This two-fold latching solves the problem of circular
self-triggering when the same register serves as the source and the destination at the same time,
as one of Flip-Flops is always latched. The Master Flip-Flop output can change its state only when
the Clock signal is high, but the Slave output can be changed only in the moment of the falling
edge of the Clock signal. (Note: ignore Enable signal for now.)

This does not happen in Direct mode, at least in most cases, when the destination stays the
same, so it is much easier to follow the data flow in the Direct mode.

12

Indicators, buttons and connectors

Supplyframe, Inc.

Carry Flag has a complex behavior, so it is represented in as much as nine indicators on the
panel schematics. Please look the following page.

We have seen how simply the Overflow Flag is generated: a single XOR logic circuit detects
the single-bit logic equality at the Carry Input and Carry Output signals of the last stage of the
Adder. Zero Flag logic is also simple, as it only tests the Accumulator input for Zero. There is only
one exception: instruction BIT RG, M sets or resets the Zero Flag depended on the tested bit state.
Note that Zero condition always sets Zero Flag to Non-Zero, and Non-Zero condition resets it to
Zero. This is valid not only for BIT RG, M instruction, but also in every other case. If the result is
Zero (all bits are 0000), the Zero Flag will be set (1), and if one or more bits in the result are set (1),
the Zero Flag will be reset (0). In a few words, Zero Flag = 1 means Zero, and Zero Flag = 0 means
Non-Zero.

Carry Flag can be a result of arithmetical or bitwise rotation. It can also be unconditionally set
by the instruction OR R0,N, reset (AND R0,N) or toggled (XOR R0,N). The drawing on the following
page, which represents Carry signal flow, is valid for ADD/ADC/SUB/SBB instructions (including CP
also, which is the same as SUB, only without storing the result), but a similar flow could be drawn for
RRC (Rotate Right Through Carry) also.

Status register, which contains Overflow, Zero and Carry flags, is probably the simplest, but
among the most important parts of processor’s hardware. Flags are kind of decision-makers in the
program flow, and the Carry Flag is sometimes called the 1-bit Accumulator.

This is a good moment to say that there is the logic circuit which decides if the Flip-Flop will
be clocked or not. Actually, the Instruction Decoder decides about that: some instructions have to
keep the existing contents of the Accumulator, or individual Flags. Only when the Accumulator (to
be more specific, the addressed register) is the destination of the operation, its contents should be
clocked. If the current instruction does not affect Flags or Accumulator contents, the instruction
decoder pulls the Enable signal low in the corresponding Flip-Flop(s), and thus locks the Flip-Flop
state. The same is valid for every flag individually, as some instructions do not affect some flags,
and they should be preserved safely in the Flip-Flop. The additional logic inputs, which disable the
Flip-Flop clocking, is represented on the following schematics. There are the same Latch Enable
inputs on the Accumulator Flip-Flops, as the contents of the Accumulator should be preserved in the
case when it is not the destination (bit oriented instructions, program branching or compare
instructions). Note that Enable inputs are not drawn on the simplified panel drawing.

STATUS register (1) and FLAG logic (2)

Flags are propagated through the Status Register in a similar way as Data Bits are
propagated through the Accumulator: there are three Master-Slave Edge-Triggered D Flip-
Flops, which are triggered with the same Clock signal and at the same time as the Accumulator
Flip-Flops. The Status Flip-Flops are not represented on the panel schematics in order to save
space, but they are the same and triggered by the same Clock and Inverse Clock signals.

Data In

Clock

Data Out

MASTER SLAVE

Enable

13

ALT DIR

SS

RUN

PGM

CARRY

HISTORY

FAST

ADDR SET

MODE

SAVE

--

PAUSE

--

LOAD

+

BREAK

+

ADDR

ADDR

CLOCK

STEP

RUN

DEP+

STACK

OPCODE OPERAND X OPERAND Y

PC2 1 0 11 10 9 8 7 6 5 4 3 2 1 0 3 2 1 0

8 4 2 1
---- -

8 4 2 1
---- -

8 4 2 1
---- -

DATA IN

BIN

SEL

SYNC DIR: DIM CLOCK DIR: BAUD PAGE DIR: FLASH

8-bit opcode

ADD

ADC

SUB

SBB

OR

AND

XOR

MOV

MOV

MOV

MOV

MOV

MOV

MOV

JR

RX,RY

RX,RY

RX,RY

RX,RY

RX,RY

RX,RY

RX,RY

RX,RY

RX,N

[XY],R0

R0,[XY]

[NN],R0

R0,[NN]

PC,NN

NN

CP

ADD

INC

DEC

DSZ

OR

AND

XOR

EXR

BIT

BSET

BCLR

BTG

RRC

RET

SKIP

R0,N

R0,N

RY

RY

RY

R0,N

R0,N

R0,N

N

RG,M

RG,M

RG,M

RG,M

RY

R0,N

F,M

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

OUT

IN

JSR

PCL

PCM

PCH

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

GND

SAO G 3 2 1 0 3 2 1 0 G V Res

PAGE+1 PAGE

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3V Rx

Tx

1

0

T R TU

I N I C S P

O

+ ++++ + ++++ + ++++

V Z C

ACCU IN

1st OPERAND

2nd OPERAND SOURCE

DEST

C C C
Cin

3 2 1 0

CLK

CLK

ACCUMULATOR
PAGE

OPCODE

Cout

SUM

OR

AND

XOR

IN

TMP

OUT

C

DATA
INV

Cin
ENA

FULL
ADDER

4

V

Indicators, buttons and connectors

Supplyframe, Inc.

6789

1
2
3

4

5

Nine indicators represent the same flag, and yet every one has the different meaning. After
the selector S, which is under the control of the instruction decoder, the 1-bit content of the Carry
Flag is fed to the input of Carry Flip-Flop (1) in the Status register. If the instruction is supposed to
affect the Carry Flag, the Clock signal will first load the content to the TMP point (2) (Master Flip-
Flop output), and then to the Carry Output (3) of the Status register.

At the same moment, the Carry Flag LED (4), which is in the Command Buttons field,
fetches the same state. This indicator is not a part of the typical processor, but it is included in this
model as it allows the user to modify the Carry Flag state manually, for experimenting. So you can
watch interactively how Carry Flag affects the Adder states.

After passing through the simple logic, which inverts Carry Flag in the case of subtraction and
turns it off if no Carry input is needed, there are Intermedial Carry Flags (6), (7), (8) between the
Adder stages, before the final Carry (9) is generated.

In the case of the RRC Y instruction, the data flow of the Carry Flag is not represented here
in detail, but there is the D0 (Data 0) signal extracted from the internal Data Bus, which is fed to the
rightmost contact of the Selector S. So the D0 logic state is driven to the Carry Flag, and the rest of
the data flow is represented on the following schematics diagram:

S

Clock

M
A

S
T

E
R

S
L

A
V

E

D1D2D3Carry D0

OPCODE
C

C10

+
Adder
C out

D0

CARRY ACCUMULATORRRC Y

14

Indicators, buttons and connectors

Supplyframe, Inc.

A total of 5 levels of Stack Pointer can be used in the program, which means that only the first
15 Data Memory locations from the Page 1 will be used for the Stack storage. If the SP overflows to
110 (decimal 6), which will happen if subroutines are called 6 times without executing RET R0,N,
program execution will be halted and the Error condition will be indicated, so that the Stack indicator
will blink at the value 110 (which is the attempted value when the error occurred). The Error condition
should be cleared by pressing any key (the command assigned to the key will not be executed).

Program Counter contains 12 bits (3 Data Memory locations), so one Stack position requires 3
nibbles for storing. When the subroutine is called (when the program writes a nibble in JSR General
Purpose Register, on location 0x0C), PC is stored at the Data Memory location 0x10+3×[SP] (low-
order address nibble first). Then the SP register is incremented by one, and JSR, PCM and PCH
registers are copied to the PC (JSR is the low-order address nibble).

When entering Single Step (SS) mode, Stack restores the last value which it had in the SS
mode.

Here is how Stack Pointer addresses Data Memory when the subroutine is called (when the
value is written in the register JSR). The process is inverse when the instruction RET R0, N is
executed.

This three-bit register is used to address the Data Memory where the Program Counter (PC)
will be stored during the execution of the subroutine (writing to JSR General Purpose Register), and
restored back to Program Counter at the execution of RETURN (RET R0,N instruction).

Stack Pointer (SP) (14)

When the Return from subroutine (instruction RET R0,N) is executed, literal N is loaded to the
register R0, then the SP is decremented by one, and contents of Data Memory from the three
locations (the first one is 0x10+3×[SP]) is written back to the PC. Note that both SP and PC registers
are not available directly to the user’s program.

 If more Returns (instructions RET R0,N) are executed than Calls (writing to the register JSR),
register SP will be in the underflow condition. Program execution will be halted and the Error
condition will be indicated, so that the Stack indicator will blink at the value 111 (decimal -1 in signed
notation). All register indicators and Data Memory matrix are still active, so the user can see the PC
Address and other conditions under which the error occurred. The Error condition should be cleared
by pressing any key (the command assigned to the key will not be executed).

When the unit is in the RUN mode, Stack Pointer is automatically cleared at every program
RUN and program Break, and when the Error state is cleared. In Single Step (SS) mode, clearing
Data Ram (performed when Program Counter is cleared by pressing ALT-ADDR minus), which also
clears the Stack.

JSR

PCL

PCM

PCH

After operationBefore operation

0x0C

0x0D

0x0E

0x0F

0x10

0x11

0x12

0x13

0x14

0x15

0x16

0x17

...

DATA
MEMORY

S
P

×
3

JSR

PCL

PCM

PCH

0x0C

0x0D

0x0E

0x0F

0x10

0x11

0x12

0x13

0x14

0x15

0x16

0x17

...

DATA
MEMORY

S
P

×
3

1 0 1 1

1 1 0 0

0 0 0 1

1 0 1 1

0 1 1 1

1 0 1 0

1 0 1 1

1 1 0 0

0 0 0 1

1 0 1 1

0 1 1 1

1 0 1 0

0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1

PROGRAM COUNTER PROGRAM COUNTER

0 0 1 0 1 0

STACK
POINTER

STACK
POINTER

1 0 1 1

1 1 0 0

0 0 0 1

1 0 1 1

1 1 0 0

0 0 0 1

1 0 0 1 1 0 0 1

1 1 1 1

0 1 0 0

1 1 1 1

0 1 0 0

15

Indicators, buttons and connectors

Supplyframe, Inc.

Indicators, buttons and connectors

Supplyframe, Inc.

IMPORTANT NOTE: Immediately after reading the current program word from the Program
Memory (which is performed automatically at the every clock pulse while the program is running), the
PC should be automatically incremented by one, always pointing to the NEXT instruction, instead of
the CURRENT one. That means that the PC is always ready to read the next instruction and it is a
faster way to perform reading. That's why this method is used in normal processors.

Note: the following diagram is simplified. Please note the gray arrows.

PC indicator (18) always displays the current state of the 12-bit Program Counter. The only
exception is when the ALT button is depressed in the History submode of the Single Step (SS)
mode. In that case (when in SS mode, History submode, and ALT depressed), PC indicator displays
the 7-bit counter which denotes the depth of the History pointer. In other words, it shows how deep
(how many backward steps) you are in the History “time machine” (how many Single Steps
backwards you are watching registers and memory contents).

Program Counter is the 12-bit pointer which keeps the address of the program word which is
read from the Program Memory and executed by the processor.

Program Memory Address (or Program Counter, PC) (18)

There is one more consequence of this non-consistency with the PC behavior of the real
processor. Instruction JR NN, which modifies the current PC adding the 8-bit signed value NN to the
PC, uses the incremented PC value, although the current (non-incremented) value is displayed on
the PC indicator. For instance, if you want to perform the dead loop (infinite loop), you should not
perform the instruction JR 0, but JR -1, as the program should jump relatively from the next location,
and not from the current one. Reminder: -1 is the signed 2’s complement number, so it should be
written as 1111 1111. Since the Opcode for the instruction JR is 1111, the instruction JR -1 should be
binary coded as 1111 1111 1111.

PC+1PC PC+2

DATA FROM [PC] DATA FROM [PC+1]

Data Latch
Data Latch

PROGRAM DATA
(Opcode, OperX, OperY)

PROGRAM COUNTER
(PC)

CLOCK (or button
“Clock” depressed)

Observing period

PC CONTENTSPC-1 PC+1

DATA FROM [PC] DATA FROM [PC+1] PROGRAM DATA
(Opcode, OperX, OperY)

PROGRAM COUNTER
(PC)

CLOCK (or button
“Clock” depressed)

Observing period

That’s what happens when we increment PC immediately after the instruction was read. If the
program is running at a high speed, you wouldn’t notice a problem, but in the slow modes (e.g. one
instruction in two seconds, or even more in the Single Step (SS) mode, the PC indicator will always
point to the NEXT instruction, instead to the CURRENT one. This means that you would have the
address [PC+1] displayed on the PC indicator, and the data from the address [PC]+0 displayed on
the Opcode, Operand X and Operand Y indicators. This could be very confusing, and that’s why
another method was used in the badge, even if it is not consistent with all other processors:

DATA FROM
[PC+1]

16

Indicators, buttons and connectors

Supplyframe, Inc.

Indicators, buttons and connectors

Supplyframe, Inc.

SAO (Shitty Add-On) connector (11)

SAO connector was recently standardized for simple badge add-ons. There are power supply
contacts on this connector, but note that there is no I2C port, but UART terminals Tx and Rx instead.

Input / Output (I/O) connector (12)

Four Input and four Output ports are available in the I/O connector for hardware expansion.
The same connector also offers five rightmost contacts for ICSP (In Circuit Serial Programmer)
which can be used for programming and debugging of the firmware of the unit. Models from PICKIT
and ICD series are pin-to-pin compatible with the connector.

There are two bits in the SFR register WrFlag which control the pin commutations of the I/O
connector. When the first one, RxTxPos (WrFlags,0), is set, UART is internally connected to the pins
of the I/O connector (Tx is also available on the SAO connector, with the same signal and can be
used in parallel with Tx signal on I/O connector). When the first one, RxTxPos (WrFlags,0), is set,
port inputs 3 and 2 read the Tx and Rx states and can not be used as general purpose I/O pins.

Bit IOPos (WrFlags,1) decides which registers will be used as Output and Onput registers.
Default registers are R10 and R11 in the General Purpose group, on page 0x00 of the Data Memory
(locations 0xFA and 0xFB). If this bit is set, all Inputs and Outputs are redirected to the SFR group,
on page 0x0F of the Data Memory (locations 0xFA and 0xFB), so registers R10 and R11 can be
used as General Purpose registers.

By default, RxTxPos and IOPos are reset. Default state is initialized at every Program RUN
and Break. Note that Program SAVE and LOAD functions always use Tx and Rx pins on the I/O
connector (not on SAO connector), regardless of the bit RxTxPos state.

M 1 0 M Res3 2 1 03 2

R

T

V

G

I C S P

V

O U T

I N

T R

+3V

1
8
K

2
K

7

1
8
K

1
8
K

1
8
K

1
8
K

1
5
0
Ω

1
8
K

1
5
0
Ω

1
5
0
Ω

1
5
0
Ω

1
5
0
Ω

1
5
0
Ω

1
8
K

1
8
K

1
8
K

1
8
K

RESET

0
1

0 1

1
5
0
Ω

1
5
0
Ω

1
5
0
Ω

In:
addr 0x0B

InB:
addr 0xFB

Out:
addr 0x0A

OutB:
addr 0xFA

1 03 2 1 03 21 03 2 1 03 2

IOPos
(WrFlags,1)

RxTxPos
(WrFlags,0)

SAO

Tx Rx

UART

1
5
0
Ω

17

Supplyframe, Inc.

Programmer’s model

There are a total of 16 Main Registers on Page 0 (0x00-0x0F) of the Data Memory. Some
of them (Registers R0-R9) are General Purpose Registers, and the rest of them (Registers R10-
R15) are Special Purpose Registers, as they are dedicated to specific functions. This Register set
can be reconfigured, so that two of the registers (OUT register, R10 and IN register, R11) are
moved to the Special Function Register group at Page 15, making free space for two more
General Purpose Registers.

This is the hypothetical 4-bit processor which is simulated by the firmware executed on the
16-bit microcontroller PI24FJ256GA704.

There is the 256-nibble (256×4) Data Memory, which can not be expanded. Program is
executed from the 4K words (4096×12) Program Memory.

Stack Pointer (SP) is a 3-bit register, not accessible directly to the user. SP memory is on
the Page 1 (0x10-0x1E) of the Data Memory. It occupies 15 nibbles, which is enough for 5 levels of
subroutines. The last nibble (0x1F) is not used, so it is available to the programmer. Also, if the
programmer is sure that not all Stack levels will be used in the program, nibbles from that area can
be used as a General Purpose Data Memory. Note that there are no PUSH or POP instructions.

There are also a total of 16 Special Function Registers (SFR), which are used to control
processor's pseudo-hardware and perform special operations. All Special Purpose Registers are
located on the Page 0xF (0xF0-0xFF) of the Data Memory. These registers are described in the
manual Special Function Registers.

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

OUT

IN

JSR

PCL

PCM

PCH

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

FA

FB

FC

FD

FE

FF

Page

Speed

Sync

WrFlags

RdFlags

SerCtrl

SerLow

SerHigh

Received

AutoOff

OutB

InB

KeyStatus

KeyReg

Dimmer

Random

00

01

02

03

04

05

06

07

08

09

0A

0B

0C

0D

0E

0F

PC

HP
(History
Pointer)

11 10 9 8 7 6 5 4 3 2 1 0

6 5 4 3 2 1 0

IN TMP OUT

2 1 0

3 2 1 03 2 1 0

SP

V Flag

Z Flag

C Flag

1 0

Mode

System
Clock

Clock
Divider

Sync
Divider

Table

Table

Processor
Clock

PAGE 0 PAGE 15 Step

RUN SS
DIR

OUT

IN

IN

OUT

SELECT

SELECT

18

Supplyframe, Inc.

Programmer’s model

There are three flags: Overflow (V), Zero (Z) and Carry (C). Adder/Subtractor contains 4 Full
Adder circuits, with Carry logic and Data inverters which enable full Add/Subtract operations for
unsigned and signed 4-bit numbers with Carry.

Every instruction has the length of 12 bits. There is a table with all instructrions in this
manual, and also the detailed description of every instruction with examples.

 MOV RX, RY (for calculated Jumps and Calls)
 MOV RX,N (for simple Jumps and Calls)
 INC RY (for repeated Table Reads)
 DEC RY (for repeated Table Reads in reverse order)

MODES OF OPERATION

Mode SS also contains the submode HISTORY, which enables reviewing and analyzing of
the last 127 program steps, with all processor signals and Data Memory contents.

Subroutine Call is performed in the similar manner, when the four lowest bits are written to
the register JSR (0x12). Registers PCM and PCH should be pre-loaded also. When the subroutine
is called, the return address is written to the Page 1 (0x10-0X1E) of the Data Memory, using the SP
register, and then the SP register is incremented by 1. Address where the 12-bit Return Address is
stored, is calculated by the formula 0x10+(3×[SP]).

Program Counter (PC) keeps the Program Memory Address. As the Program Memory
occupies 4096 words, PC register has 12 bits.

There are no Long Jump or Call instructions, so Long Jumps and Subroutine
Calls/Returns are performed by writing a nibble in the Registers which are in the Page 0: writing to
the register PCL performs the Long Jump to the location addressed by registers PCL (0x13), PCM
(0x14) and PCH (0x15). Registers PCM and PCH must be pre-loaded with the desired high portion
(bits 11-4) of the address.

 DIR (Register addressing, directly executed instructions without memory usage)
 SS (Single stepping of the program from the Program Memory, temporarily editable)
 RUN (Program execution)
 PGM (Program writing or editing)

There are also two special modes, used for hardware and firmware maintenance: Test Mode
and Bootload Mode.

Internal clock frequency is user-selectable (and also selectable by the program) in 15 steps
from 0.5 Hz to 100 KHz, and the 16th clock frequency step is at the maximum speed, which is
about 250 KHz, but not guaranteed and not synchronized to the internal time base. Every
instruction is executed in one clock cycle, so the maximum execution speed is about 0.25 MIPS.

All internal registers and many internal logic states of the processor are displayed in real-
time. Also, two selected pages (16 nibbles each) are displayed on the LED matrix. However, all LED
indicators are multiplexed, so some fast processor operations are subject to interference effect.

Another user-selectable (also selectable by the program) is the Sync Timer. It generates the
internal heartbeat stream which has no impact neither on the hardware nor on the system firmware,
but only sets the single bit in the SFR group (bit 0, named UserSync in RdFlags register). User’s
program can test this bit as a flag at the handshaking manner, and thus synchronize the program
flow to the uniform time periods. Available periods are arranged in 16 steps from 1 ms to 1 sec.

Note: According to the schematic, data inverter for D0-D3 inverts the Destination bits only.
However, in most cases it inverts Source bits, but there was no space for these bits here.

When the RETURN instruction is executed, the process is reversed: Return address is read
from the SP calculated address to the PC, and the SP is decremented. Also, 4-bit literal number is
loaded to the R0 (which is on the address 0x00). This can be used for lookup table read.

Not all instructions will initiate Long Jumps or Calls by writing to the PCL and JSR registers.
Only the following instructions, which point to registers PCL or JSR as the destination, will do that:

As it was mentioned before, there are four basic modes:

19

Supplyframe, Inc.

Programmer’s model

Data memory contains 256 nibbles (256×4), organized in 16 pages. Page 0 (0x00-0x0F)
contains a total of 16 main registers. The first 10 registers (R0-R9) are the General Purpose
Registers, and the remaining six (0x0A-0x0F) are the Special Function Registers. Two functions
(Out and In) which regularly occupy locations 0x0A and 0x0B, can be redirected to the SFR area
on the last page, which allows free access to 12 General Purpose Registers. In that case, Out and
In registers are at locations 0xFA and 0xFB.

The second page of the Data Memory is assigned to the Stack. It is the area where the
Return Address will be written at every Subroutine Call. A total off 5 levels of Stack is allowed,
and every Return Address takes 12 bits (4 nibbles), so a total of 15 nibbles can be used for the
Stack.

Page 15 is the Special Function Register (SFR) area, which contain 16 different registers with
special functins. There is a detailed description of SFR in the manual “Special Function
Registers”.

Every portion of Data Memory, in the length of two pages (32 nibbles), can be interactively
displayed on LED matrix. Register PAGE (which is in the SFR area at the address 0xF0)
determines which page will be displayed. The selected page is on the right halve of the display, and
the next page is on the left. If the selected page is 15, then the next page, displayed on the left
halve, will be 0.

ERROR PROCESSING

Page 14 can be used as the Shaddow Register area for a selected number of Main
Registers from the page 0. Instruction EXR N swaps the contents of pages 0 and 14, in the length
defined in the literal number N.

There is a total of 31 instructions, which are listed and described in detail in the manual
INSTRUCTION SET. Only 11 instructions are available in DIR mode (manual INSTRUCTION SET
IN DIRECT MODE).

INSTRUCTION SET

Opcode and operand fields are divided in three 4-bit groups, so that there are 4-bit and 8-bit
opcodes (bits 11-4 or 7-4) with one or two operands (only in a few special cases, used for skip and
bit manipulations, there are 8-bit opcodes and two 2-bit operands). This strict and clear
Opcode/Operand allocation inside the 12-bit Program Word space greatly eases writing of
programs in the pure machine language. Also, there are 4-to-16 decoders with LED indicators,
which interactively display the program code disassembled in some way, making it much easier to
read and write, without learning the instruction codes.

The only Fatal Errors which are possible at runtime, are the Stack Errors. Stack Underflow
and Stack Overflow cause the unconditional program termination, with Stack indicator blinking,
showing the illegally attempted state 110 (6) on overflow, or 111 (-1) on Underflow

After the Data Memory Organization on the next page, there is a table with all instructions
listed. After that, the detailed description of every instruction follows, with examples, coding
schemes and flags affected.

DATA MEMORY

20

Direct (DIR) Mode

Supplyframe, Inc.

MODE button and indicators (16)

There are four main modes: DIR (Direct), SS (Single Step), RUN and PGM (Program) mode.
They are selected sequentially by pressing the Mode button. At every press, the next mode is set in
increasing order. When ALT button is depressed, Mode button selects the mode in reversed order.

Every button from the Command Group (17) has the different function, which is depended on
the current Mode. The description of available modes is on the following pages.

DIR (Direct)

SS (Single Step)

RUN

PGM (Program)

M
O

D
E

A
LT

 -
 M

O
D

E
Direct writing and execution of instructions using
Register addressing. Also program Save and Load.

Program execution from the Program Memory
with manual modification and single stepping.

Program execution from the Program Memory
driven by the internal adjustable Clock.

Program editor for direct writing to the internal
Program Memory

DIR

SS

RUN

PGM

CARRY

HISTORY

FAST

ADDR SET

SAVE

--

PAUSE

--

LOAD

+

BREAK

+

CLOCK

STEP

RUN

DEP+

MODE

ADDR

ADDR

21

Direct (DIR) Mode

Supplyframe, Inc.

Direct (DIR) Mode

All flags are normally active in the DIR mode.

Instructions which communicate with the Data Memory cannot be executed in DIR mode. If the
non-existing instruction is selected, LED which points to the instruction in the vertical decoded fields,
will blink and the Clock button will not be active.

Here’s an example: if the instruction ADD RX,RY (0001) is selected in the Opcode field, in the
DIR mode it will be executed so that value displayed in the Operand Y field is added to the value
displayed in the Operand X field and, when the button Clock is pressed once, the result (which is
indicated on the Adder output and the Accumulator input) will be written to the register RX
(indicators in the Operand X field).

DIR Mode can be used for experimenting with different parts of the processor core:
Accumulator, Register X, Register Y, Adder/Subtractor, Logic Group, Flags and so on. Most
instructions can be executed by pressing the button Clock, but there is no indirect addressing mode,
as registers Operand X and Operand Y contain only literal values. Data Memory is not accessible,
which also means that General Function registers and Special Function registers do not exist in DIR
mode. I/O connector is also not accessible. Programs written in Program Memory have no effect in
DIR mode. The same is valid for Program Counter (PC), Stack Pointer or Page registers.

Registers RX (available in the Operand X field) and RY (in Operand Y field) are used as the
two directly accessible 4-bit registers, and they do not point to the first page of the Data Memory, like
in all other modes. If register RX or RY is the destination, the result will be written directly to the
register RX or RY.

In SS and RUN modes, processor will operate with contents of the General Purpose registers
in Data Memory, which are addressed with RX and RY registers. For instance, if the value of
Operand X is 0101 (decimal 5) and the value of Operand Y is 1001 (decimal 9), processor will read
values of registers R5 and R9, which are in the Data Memory at the addresses 0x05 and 0x09,
adder will calculate the sum and write the result to the register R5 (Data Memory address 0x05).

User Program can be saved or loaded in DIR mode. Media available for program storing is the
internal Flash memory, which can store up to 15 user’s programs, or the external store unit which
communicates through UART (Universal Asynchronous Receiver-Transmitter). Transmit and
Receive terminals are with 3V logic levels, so the best way to implement the serial communication
with the laptop or desktop computer is the USB/Serial converter. Don’t forget to cross Rx and Tx
conductors, but also to leave the + terminal from the converter unconnected! Two power sources
should never be connected in parallel, as the consequences could be unpredictable.

The same connection with the computer enables program sharing and loading of externally
generated programs (assembler or some other way to generate the program code).

Although the Display Matrix is not active in DIR mode, there are two exceptions. The first one
is displaying of Program Version/Revision and Release Date, which is performed after the Master
Reset (by removing and reinserting batteries or shorting pins Res and G on the I/O connector). This
will be displayed only once after the Master Reset, and it will be cleared when any button is pressed.

OPCODE

0 0 0 1
OPER X

0 1 0 1
OPER Y

1 0 0 1

+

OPCODE

0 0 0 1

+

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

0010

1010

1111

0011

0010

0110

1011

0000

1011

0111

OPER X

0 1 0 1
OPER Y

1 0 0 1

ADDER

ADDER

Direct Mode
(Register Addressing)

SS Mode
RUN Mode
(Indirect Addressing)

0001 =
ADD RX,RY

0001 =
ADD RX,RY

95

14

7

6

13

R5

R9

General
Purpose
Registers

22

Supplyframe, Inc.

Indicator Carry in the Command Group (17) is automatically updated at every instruction
execution, but user can toggle it by pressing the button Carry under the indicator. It can be helpful in
experimenting and watching how Carry Flag affects execution in certain processor core sections,
especially in Adder/Subtractor.

DIR Mode: Button SAVE

Here are the rules for serial Save/Load:

DIR Mode: Button CARRY

 - Serial Port settings: 9600, N, 8, 1 (not affected by SFR setting in SerCtrl register)
 - Hardware considerations: 3V CMOS Logic levels (Tx/Rx on I/O connector only)
 - Tx/Rx on SAO connector can not be used for program saving or loading
 - Software protocol (in Hexadecimal form):

Since the program data is contained of 12-bit words, writing format is 16 bits for every word,
but the upper nibble (bits 15-12) is always dummy 0. Header is a simple 6-byte string, and all other
items are 16-bit numbers in Little Endian order (Least Significant Byte first).

Saving to the external unit through the Serial Port is performed by simply pressing SAVE
button in DIR mode.

 1. Header 6 bytes: 00 FF 00 FF A5 C3
 2. Program length 2 bytes (in 16-bit words, Low byte first): NN NN
 3. Program NN 0N×Program Length (Low first): NN 0N, NN 0N, NN 0N...
 4. 16-bit Checksum 2 bytes (items 2 and 3 only, Low first): NN NN

Note that the unit has no feedback from the external unit, and it will send the program
immediately to the Serial Port, even if there is no connection. So it is essential that everything is
prepared before the button SAVE is pressed, and that the external unit already expects data from the
port. This is valid also if the program is shared directly between the two equal units.

Carry Save Load Clock

Save Program
Memory to

selected Flash

Load Program
Memory from

selected Flash

Send Program
Memory to
Serial Port

Load Program
Memory from

Serial PortToggle
Carry Flag

Master
Clock source

ALT

Opcode Operand X Operand Y

ALT

Instruction
Opcode

(bits 11-8)

Direct
Operand X or

Opcode (bits 7-4)

Direct
Operand Y
(bits 3-0)

Dimmer
level select

Baud Rate
select

Flash portion
select for

Save / Load

Data In

Toggle between
BINary and

SELect mode

Direct (DIR) Mode

 Another exception of the Display Matrix function in DIR mode is displaying the Flash
occupancy before the program saving or loading. To see Flash occupancy in DIR mode, just keep the
ALT button depressed. Every pixel in this case represents the occupancy of 512 program words.

23

Supplyframe, Inc.

Writing to the Flash memory is performed much faster than writing to the Serial Port, so no
taskbar is displayed here. As the master processor, which drives the unit, halts the program execution
during programming, display matrix refresh is inhibited and all LEDs (except SAVE) are switched off
for a fraction of a second. This is quite normal.

Loading is performed similarly to saving, but in the inverse manner. Command for loading from
the external computer or some other unit via UART is simply pressing LOAD, and when the data
starts flowing and the internal program memory loading data, the same taskbar appears on the three
vertical bars, but this time in the inverse direction, upside down, suggesting the data flow from the I/O
connector to the unit. If the LOAD button is pressed unintentionally in DIR mode, the process can be
stopped by pressing any key, and if the valid header is not received through the serial port, the
contents of the internal program memory will not be destroyed.

It means that Flash location 15 has the special function and can not be used for program
storage. Command to write to this location (ALT-SAVE with location 15 selected) will be ignored by
the system, but loading from location 15 will be executed normally (this time without automatic spare
copying).

 - Serial Port settings: 9600, N, 8, 1 (not affected by SFR setting in SerCtrl register)
 - Hardware considerations: 3V CMOS Logic levels (Tx/Rx on I/O connector only)
 - Tx/Rx on SAO connector cannot be used for program saving or loading
 - Software protocol is same as for LOAD command

During program saving, the taskbar appears on the three vertical decoded indicator bars.

However, if there is nothing to save (if the whole Program Memory is empty), indicator SAVE
will blink and no data will be sent to the Serial Port. In that case, any button will quit blinking and
return the unit to the previous state.

If the program has to be saved to the internal Flash memory, ALT-SAVE has to be typed (hold
ALT while pressing SAVE). But before that, a few steps should be performed. First, select the
address of the portion of Flash memory where the program will be saved. There are a total of 15
available portions (the 16th one has a special function), and the selection of the desired one should
be performed by pressing and holding the ALT button, while selecting the portion by pressing buttons
in the Operand Y field. The helpful feature is that the Flash occupancy is displayed on the Display
Matrix, so you just have to match the vertical indicator bar next to the desired portion. When you are
finished with the Flash portion choice, just press SAVE while you are still holding ALT.

There is no Undo option, and no additional verification before the program saving, and the
previous contents of the addressed Flash portion will be overwritten unconditionally, so please take
good care when selecting the target portion of the Flash memory.

DIR Mode: Button LOAD

Command for program loading from the internal Flash memory is ALT-LOAD, but before that
the same selection of the Flash portion should be performed. Every time prior to the program loading
from the internal Flash, automatic safety writing of the current Program Memory contents to the
location 15 is performed. So if you loaded the program from the Flash memory unintentionally (for
instance, if you intended to perform Save), the contents of the internal Program Memory is wiped
out, but there is a spare copy in the location 15 and we can load the program from it. The only thing
that can be really destructive, is if you perform unwanted loading twice, as the new safety writing,
which is performed automatically at the LOAD command, could wipe out the Flash location 15, this
time without the spare copy.

Here are the rules for serial Save/Load:

When the Clock button is pressed in DIR mode, the result of the current operation and Flags
are latched in the Master Flip-Flops of the Accumulator and the Status register, respectively (note
that every instruction enables or disables latching for the Accumulator and every Flag separately,
depending on the instruction context).

DIR Mode: Button CLOCK

Direct (DIR) Mode

24

Supplyframe, Inc.

Direct (DIR) Mode

Note: There are actually two Accumulators in DIR mode, one of them is Register X (available
and displayed in the Operand X field) and the another one is Register Y (available and displayed in
the Operand Y field). The one that is displayed is actually the destination of the operation. If there are
two operands in the instruction, it will be RX, and if there is only one, it’s RY. Switching of the two of
them (which occurs when the Clock button is released and the next instruction does not use the same
destination) can sometimes cause confusion.

After the Clock button is released, Slave Flip-flops in the Accumulator and the Status register
perform the final latching and the result (if any) is safely stored in Slave Flip-flops. The new value of
the destination register is written to Rx or RY, the new instruction is executed and the stage is ready
for the next pressing of the Clock button.

25

Supplyframe, Inc.

Single Step (SS) Mode supports manual stepping through the program written in the Program
Memory. Modification of the contents of every program word is possible, but it is valid only once, for
direct execution only (which is initiated by pressing “STEP”). Permanent modification of Program
Memory is possible in PGM mode only.

Single Step (SS) Mode also contains the extra HISTORY submode, which allows reviewing of
the last 127 steps performed in Single Step (SS) mode.

Single Step (SS) Mode

Indicator Carry shows the Carry Flag state, but it cannot be modified manually in SS mode.

Display Matrix in SS mode shows the contents of Data Memory on the selected Page, but
while the button ALT is pressed, Page 0 (right) and Page 1 (left) are unconditionally displayed.

History Addr - Addr + Step

Reset
Program Memory
Address to 0x000

Decrement
Program Memory

Address

Enter
History submode

Execute
one instruction

Opcode Operand X Operand Y Data In

Inactive

Increment
Program Memory

Address

Preset Program
Memory Address to
the last word used

ALT

History Addr- Addr+ Step

Step Ahead
History Pointer

(later event)

Preset Pointer to 1
(Point to the last
History event)

Exit
History submode

Step Back
History Pointer
(earlier event)

History Submode

Opcode Operand X Operand Y

ALT

Instruction
Opcode

(bits 11-8)

Instruction
Operand X or

Opcode (bits 7-4)

Instruction
Operand Y
(bits 3-0)

User Sync
Index select

Processor Clock
Index select

Display Page
select

Data In

Toggle between
BINary and

SELect mode

History Submode

InactiveInactiveInactive

Single Step (SS) Mode

Address set from
Opcode, Operand
X and Operand Y

Toggle
Carry Flag

26

Supplyframe, Inc.

Button HISTORY is used to enter History submode, which allows you to review the last 127
steps executed in SS mode. All visible indicators show the state of registers and logic levels when the
event was executed and automatically recorded.

If the current Program Memory Address is 0000 0000 0000, decrementing will wrap the new
value to 1111 1111 1111, which is the last program word in the memory.

Button ADDR- in SS mode decrements the 12-bit Program Memory Address pointer by 1.

Data Memory contents of the page which was selected is also displayed, and when the button
ALT is pressed in History submode, contents of Pages 0 and 1 (which were valid when the event
was recorded) is also displayed.

Pressing the button STEP exits HISTORY submode and returns back to the normal SS mode.

If the current Program Memory Address is 1111 1111 1111, which is the last program word in
the memory, incrementing will wrap the new value to 0000 0000 0000.

Single Step (SS) Mode: Button ADDR -

Program Counter (PC) indicator shows the Program Memory Address of the recorded event,
and when ALT is pressed, it displays the History Pointer state. That means that you can see how
“deep” you are in History steps (how old is the displayed event, in executed steps).

Button ADDR+ in SS mode increments the 12-bit Program Memory Address pointer by 1. If
ALT is depressed, then button ADDR+ sets Program Memory Address to the last program word used
(the last one which does not contain value 0000 0000 0000).

Single Step (SS) Mode: Button HISTORY

The general rule in History mode is that you can see all program parameters and registers, but
you can’t modify anything.

Indicator SS blinks, signifying that the unit is in the History submode. Pressing ADDR- or
ADDR+ decrements or increments the History Pointer. When pressing of ADDR- or ADDR+ causes
the corresponding indicators to turn on, that means that pointer reached the start (1) or the end (127)
of the History buffer.

In History submode, button ADDR+ steps ahead the History pointer (later event).

In History submode, button ADDR- steps back the History pointer (earlier event).

If ALT is also depressed, then button HISTORY only toggles the CARRY flag.

Single Step (SS) Mode: Button ADDR +

If ALT is also depressed, then button ADDR- resets Program Memory Address to 0000 0000
0000. Also, the whole Data Memory, Stack Pointer and Page register are cleared to zero.

Single Step (SS) Mode

27

Supplyframe, Inc.

When the button STEP is pressed in SS mode, one program step (execution of the current
instruction) is performed. When the button is depressed, the result of the current operation and Flags
are latched in the Master Flip-Flops of the Accumulator and the Status register, respectively (note
that every instruction enables or disables latching for the Accumulator and every Flag separately,
depending on the instruction context).

Every modification of the instruction is taken into account, and when the STEP button is
pressed, the instruction in Opcode, Operand X and Operand Y registers will be executed, even if the
Program Memory contains some other data. But the modification will be valid for only one execution,
as the Program Memory contents were not modified. The only mode which has the right to affect the
Program Memory contents is the PGM mode.

Single Step (SS) Mode: Button STEP

After the STEP button is released, Slave Flip-flops in the Accumulator and the Status register
perform the final latching and the result (if any) is safely stored in Slave Flip-flops. The new value of
the destination register is, in most cases, written to the destination address (which depends on the
instruction), then the Program Counter is incremented by 1 (or preset to the new value if the
instruction caused program branching). Then the contents of the Program Memory, addressed by
Program Counter, is read, latched and displayed by the indicators in Opcode, Operand X and
Operand Y. The execution of the new instruction is simulated and all indicators show the correct state
of the internal registers and data paths, but storing the result of the instruction has to wait for the new
STEP cycle.

Prior to every instruction execution in SS mode, which happens when the button STEP is
released, all machine states, flags, registers and two portions of the Data Memory (the currently
displayed, and the portion of Page 0 and Page 1) are loaded into the 127-block History Buffer. The
contents of this buffer will be used if the History submode is invoked.

When ALT is depressed, button STEP does not execute code in Opcode, Operand X and
Operand Y, but loads the contents of these registers to the Program Counter (same as Addr Set
command in PGM mode). It is a fast way to preset PC to some predetermined value.

 At this moment, when the system is waiting for the new STEP command, you can modify every
bit in the instruction, and watch interactively how the processor registers react to the new values. The
data which is supposed to be written at the destination, appears at the 4-bit Accumulator inputs, and
the flags at the Status Register inputs (upper row). However, they will not be written to the
destination if the instruction does not allow that. Some instructions don’t write data to the destination
(e.g. CP Y or SKIP F, M) and many instructions affect only some flags, if any. That’s why some flags
are shifted down in the register when the STEP button is pressed, and some are not. You can see
which are affected by which instructions on the table at the back (bottom layer) of the unit PCB, or in
the instruction list (PDF file “INSTRUCTION SET”).

Single Step (SS) Mode

28

Supplyframe, Inc.

RUN Mode

RUN Mode is used to control the execution of the program written in Program Memory. When
the RUN button is pressed in RUN mode, most registers and pointers (Stack, Page, Clock, Sync,
WrFlags) are cleared, and some of them are preset to default values (Dimmer to maximum
brightness, and SerCtrl to 0011 binary, so the Baud Rate is set to 9600). The whole Data Memory is
cleared, and then the execution starts from the Program Memory Address 0000 0000 0000. So the
program is always executed with the known initial values, and the further state of all control bits and
variables is at the user’s program responsibility.

After the program is terminated (which will happen if the processor detected the Stack Error,
or when button BREAK is pressed), the same register clearing process is performed again.

Buttons in Opcode / Operand X / Operand Y fields are inactive in RUN mode, so the code can
not be affected. However, the same buttons are active with ALT pressed, so it is possible to modify
Sync, Clock and Page parameters. If the program is running, it has to be paused first to perform the
modification of Sync, Clock and Page.

Note that Sync, Clock and Page are regular SFR (Special Function Registers) and that they
can be preset at any time under the program control.

RUN Mode

Fast Pause Break Run

Program Execution
Pause / Resume

On/Off Toggle 10×
Faster Clock and
Sync (if possible)

RUN Program
From

Program Memory

Terminate
Program

Execution

Opcode Operand X Operand Y

ALT

Inactive

User Sync
Index select

Processor Clock
Index select

Display Page
select

Data In

Inactive Inactive

Active only at runtime

Toggle between
BINary and

SELect mode

Button FAST is used for switching between normal and fast (10×) execution mode. When the
FAST mode is activated, indicator RUN in MODE field blinks.

RUN Mode: Button FAST

In FAST mode, indexes in SYNC and CLOCK variables are temporarily modified to point to the
higher speed. If normal settings are already at the maximum speed or close to the maximum, FAST
mode will have no or little effect.

Pressing the button FAST has no effect if the program is not running.

29

Supplyframe, Inc.

Exit from PAUSE is performed by pressing the button RUN. Program execution will be
performed normally. Pressing the button BREAK in Pause mode quits the program execution.

The only way to quit the program execution regularly is to press the button BREAK. It is also
possible to stop the PAUSE mode and to quit the program execution with the button BREAK.

When the BREAK button is pressed in RUN mode, most registers and pointers (Stack, Page,
Clock, Sync, WrFlags) are cleared, and some of them are preset to default values (Dimmer to
maximum brightness, and SerCtrl to 0011 binary, so the Baud Rate is set to 9600). The whole Data
Memory is cleared, and the unit is ready to restart the same or load the new program, or to change
the mode.

RUN Mode: Button BREAK

RUN Mode: Button PAUSE

Pressing the button BREAK in RUN mode has no effect if the program is not running.

Pressing the button PAUSE has no effect if the program is not running.

RUN Mode: Button RUN

Button RUN in RUN mode starts the program execution from the Program Memory, starting
from the address 0000 0000 0000.

When the RUN button is pressed, most registers and pointers (Stack, Page, Clock, Sync,
WrFlags) are cleared, and some of them are preset to default values (Dimmer to maximum
brightness, and SerCtrl to 0011 binary, so the default Baud Rate is set to 9600). The whole Data
Memory is cleared. So the program is always executed with the known initial values, and it can adjust
them dynamically, as needed.

Button PAUSE stops execution temporarily. While the PAUSE mode is active, indicator PAUSE
blinks. In Pause mode, it is possible to modify variables Sync, Clock and Page by holding button
ALT and pressing buttons in the Opcode, Operand X and Operand Y. There is a text under these
buttons to helps orientation and serves as the command reminder.

RUN Mode

30

Supplyframe, Inc.

Program (PGM) Mode

Except for the LOAD command, Program (PGM) Mode is the only mode which allows
modification and writing to the Program Memory. The regular procedure is to set the 12-bit Program
Word (preset and displayed in the Opcode, Operand X and Operand Y fields), and then, assuming
that the Program Counter (PC) points to the desired address, press button DEP+ (Deposit with
post-increment). At that moment, the 12-bit Program Word will be written to the internal Program
Memory and the Program Counter (PC) will be incremented by 1.

Program (PGM) Mode

Program (PGM) Mode: ADDR SET

Note that every time when the Program Address is modified, the contents of the addressed
memory location is transferred to the Opcode, Operand X and Operand Y fields.

When the button ADDR SET is pressed in PGM mode, the contents of Opcode, Operand X
and Operand Y registers are copied to the Program Counter (PC). This is a convenient way to
preset the desired Program Address. Note that Opcode, Operand X and Operand Y fields are not
used for Program Data, like in all other cases, but for Program Address.

Opcode Operand X Operand Y

ALT
User Sync

Index select
Processor Clock

Index select
Display Page

select

Data In

Toggle between
BINary and

SELect mode

Instruction
Opcode

(bits 11-8)

Instruction
Operand X or

Opcode (bits 7-4)

Instruction
Operand Y
(bits 3-0)

Address set from
Opcode, Operand
X and Operand Y

Addr Set Addr- Addr+ Dep+

Reset the Page and
Program Memory
Address to 0x000

Decrement
Program Memory

Address

Write the current word,
overwriting the old
one, increment PC

Increment
Program Memory

Address

ALT
Write the current word,

moving (pushing) all
subsequent words up

ALT / Both buttons
Clear all Memory,Data Memory and
most registers (Note: NO UNDO!)

Preset Program
Memory Address to
the last word used

Delete the current word
(move all subsequent

words down)

31

Supplyframe, Inc.

Note: Command ALT / ADDR SET moves all subsequent program words one position down,
which typically means that all symbol names should be modified. This has no effect only if the current
instruction pointer is near the end of the written program and there are no symbol names behind it.

Program (PGM) Mode: ALT / ADDR SET

Here is an example:

If the current Program Memory Address is 0000 0000 0000, decrementing will wrap the new
value to 1111 1111 1111.

Program (PGM) Mode: ALT / ADDR-

If ALT is depressed, command ADDR+ sets the Program Address Pointer (current program
word) to the last word used in program (the last word which is not 0x000).

If ALT is depressed, command ADDR SET deletes the current Program Word and moves all
the subsequent words in the Program Memory one place down, thus overwriting the current memory
location. The Program Address Pointer is unchanged. There is no UNDO.

Program (PGM) Mode: ADDR-

Note that every time when the Program Address is modified, the contents of the addressed
memory location is automatically transferred to the Opcode, Operand X and Operand Y fields.

If ALT is depressed, then button ADDR- resets Program Memory Address to 0000 0000 0000.
Also, the whole Data Memory, Stack Pointer and Page register are cleared to zero.

Note that every time when the Program Address is modified, the contents of the addressed
memory location is automatically transferred to the Opcode, Operand X and Operand Y fields

Program (PGM) Mode: ALT / ADDR+

Button ADDR- in PGM mode decrements the 12-bit Program Memory Address pointer by 1.

Program (PGM) Mode: ADDR+

If the current Program Memory Address is 1111 1111 1111, which is the last program word in
memory, incrementing will wrap the new value to 0000 0000 0000.

Note that every time when the Program Address is modified, the contents of the addressed
memory location is automatically transferred to the Opcode, Operand X and Operand Y fields.

Button ADDR+ in PGM mode increments the 12-bit Program Memory Address pointer by 1..

Program (PGM) Mode

18F A50 900 81A E22 4F1 990 EE3 F02 005 292 BFF

18F A50 900 81A E22 990 EE3 F02 005 292 BFF 000

After ALT / DEP+

Before ALT / DEP+

ADDR 000 001 002 003 004 005 006 007 008 009 00A 00B

ADDR 000 001 002 003 004 005 006 007 008 009 00A 00B

ADDRESS POINTER

32

Supplyframe, Inc.

If you use the analogy with Text Editor, ALT / DEP+ command is similar to writing text in
Pushwrite mode, and DEP+ in Overwrite mode.

Note: Command ALT / DEP+ moves all subsequent program words one position up, which
typically means that all symbol names should be modified. This has no effect only if the current
instruction pointer is near the end of the written program and there are no symbol names behind it.

If you use the analogy with Text Editor, DEP+ command is similar to writing text in Overwrite
mode, and ALT / DEP+ in pushwrite mode.

Button DEP+ in PGM mode is used to store the contents of the Opcode, Operand X and
Operand Y fields to the program memory, at the location defined by the Program Memory Address ,
overwriting the previous contents (no UNDO). After storing the Program Word to the Program
Memory, the Program Counter (PC) is automatically incremented by 1. Then the contents of the
new location (addressed by the new value of PC) is automatically transferred to the Opcode,
Operand X and Operand Y indicators.

Program (PGM) Mode: ALT / ADDR- / ADDR+

Program (PGM) Mode: DEP+

If ALT is depressed, pressing ADDR- and ADDR- simulteneously clears the whole Program
Memory, Data Memory and most registers. There is no UNDO.

This means two things, which should be kept in mind during program writing. First, if the DEP+
button is repeatedly pressed in PGM mode without modifying the Program Word contents, it will not
affect the contents of the Program Memory, as every location is first read and stored to the Opcode,
Operand X and Operand Y registers, and then rewritten to the memory unchanged. And second, the
contents of the Opcode, Operand X and Operand Y registers are not written to the Program
Memory until the DEP+ button is pressed. Especially if only one word has to be modified, it is easy to
make the mistake and switch to PGM mode, then find and modify the Program Word, and then hurry
back to RUN mode to test it. Program memory is not modified if DEP+ was not pressed after the
modification was performed in the Opcode, Operand X and Operand Y fields.

Program (PGM) Mode: ALT / DEP+

If ALT is depressed, command DEP + not only writes the new word to the Program Memory,
but also moves all the subsequent words in the Program Memory one place up, thus freeing one
memory location. Then it duplicates the current word on the new location. There is no UNDO.

Here is the example:

Program (PGM) Mode

18F A50 900 81A E22 D43 990 EE3 F02 005 292 BFF

18F A50 900 81A E22 4F1 D43 990 EE3 F02 005 292 BFF

After ALT / DEP+

Before ALT / DEP+

ADDRESS POINTER AFTER OPERATION

ADDRESS POINTER BEFORE OPERATION

ADDR 000 001 002 003 004 005 006 007 008 009 00A 00B

ADDR 000 001 002 003 004 005 006 007 008 009 00A 00B 00C

OPCODE OPER1 OPER2

33

Supplyframe, Inc.

Special Modes

Test mode is used for hardware testing. To enter Test mode, ALT button should be pressed
at the moment when the unit starts operation after the hard Reset. There is no Reset button, but
the Reset procedure may be performed by one of the two following methods:

TEST MODE

 - Disconnect and reconnect one of batteries, or
 - Short pins Ground (third from the right) and Reset (the rightmost) on the I/O connector.
 Take care not to short pin +3V (which is between Ground and Reset) with Ground.

In Test mode, at the first moment all LEDs are in dynamic ON state, with the 1/3 duty cycle
marching pattern. When the first button is pressed, all LEDs remain turned ON, except the display
matrix and the lowest row, above buttons. Now you can toggle On/Off every LED individually, and
thus test every button individually. When all the buttons are tested (all LEDs turned ON), the TEST
mode is terminated and the unit returns to the normal operation.

BOOTLOAD MODE

There are two functions in the Bootload mode: SAVE, which makes the backup copy of the
current firmware in the extra space of internal Flash Memory, and LOAD, which downloads the new
firmware from the computer, via Serial Port.

To make the backup copy of the current firmware, keep the buttons ALT and SAVE pressed
during the Reset procedure (connecting the battery or shorting pins Reset and Ground). This
swaps the Main and Backup Program Memory regions of the MCU, which takes about 5 sec:

YES

NO

NO

NO

YES

YES

NO

YES

NO

YES NO

YES

YES

NO

YES

RECEIVE AND
WRITE BYTES TO
FLASH MEMORY

SWAP CONTENTS OF
MAIN AND BACKUP
FLASH PROGRAM

MEMORY

TURN ON LEDS
“SAVE” AND “LOAD”

LED “LOAD”
FAST BLINKING

1st BYTE
RECEIVED?

LED “LOAD”
SLOW BLINKING

LEDS =
ASCII “BL”?

TOGGLE THE
CORRESPONDING
KEY LED ON/OFF

ANY KEY
PRESSED?

PERFORM
TEST PATTERN

FOR LED MATRIX

“LOAD”
PRESSED?

“SAVE”
PRESSED?

MODE
PRESSED?

ONLY ALT
PRESSED?

ALT+LOAD
PRESSED?

ALT+SAVE
PRESSED?

PAUSE IN
RECEPTION?

MASTER
RESET

MAIN
PROGRAM

START

NO

NO

YES

YES

NO

0x01000 0x0D000 0x19000

ALT DIR

SS

RUN

PGM

CARRY

HISTORY

FAST

ADDR SET

MODE

SAVE

--

PAUSE

--

LOAD

+

BREAK

+

ADDR

ADDR

CLOCK

STEP

RUN

DEP+

Internal Flash Memory

M 1 0 M Res3 2 1 03 2

I C S P

V

O U T

I N

T R

B
O

O
T

L
O

A
D

E
R

34

B
O

O
T

L
O

A
D

E
R

Supplyframe, Inc.

Special Modes
To download the new firmware immediatelly from the Serial Port, keep the buttons ALT and

LOAD pressed during Reset. LED LOAD will blink slowly until the firmware starts loading, and than
it will switch to fast blinking. This takes about 30 sec or more, depending on the binary file length.

UART settings are 9600, N, 8, 1. Settings in SFR 0xF3 (SerCtrl) do not affect the Baud Rate
in Bootload Mode or for Program Save/ Load. Only pin Rx in the I/O connector is active, not the
pin Rx on the SAO port. There is no transmitting from the unit, so although the pin Tx can be
connected, it has no effect.

If there was no meaningful firmware in the Backup area and the Program Memory Swap is
performed, command MODE has no sense, as the program will execute instructions from the
unprogrammed area and will probably crash. In this case, ALT-SAVE with RESET should be
performed again, to restore the old firmware, or ALT-LOAD during RESET, and the proper firmware
downloading.

After any of the two procedures (Swap or Bootload), LEDs SAVE and LOAD are both turned
ON, which means that the unit is still in Bootload mode. Only two buttons are active in this mode:

 MODE: Return to normal mode
 LOAD: Download the new firmware again from the Serial Port.

Checksums are indicated in the Big Endian format, which means that the High Byte is
displayed in the row 14 (0xE) and the Low Byte in the row 15 (0xF). The Most Significant Bit (MSB)
is at the left side. After the first button is pressed, Version and Checksum data will disappear from
the LED matrix and the only way to see it again is to reset the unit again.

After the bootload process is complete, you can switch back to the normal mode, by pressing
the button MODE. The firmware parameters Version/Revision/Year/Month/Date will be indicated at
the top of the LED matrix, and the calculated Checksum at the bottom of the matrix. If the
checksum matches the 16-bit number published together with the version, it means that the
bootload process was OK. Between the Version and Firmware Checksum data (in rows 10 and
11), there is the Bootload Firmware Checksum, in the same format as the Main Firmware
Checksum. The Bootload Firmware area is write protected, so the checksum should not change in
any circumstances.

There is the alternate way to enter Bootload mode: while the unit is in Test mode (when the
LEDs are blinking or all schematics LEDs are ON), you can test every button by switching the
corresponding LEDs ON/OFF. You can use it to adjust LEDs in the Command and Opcode fields to
display the ASCII uppercase “B” (01000010), and also uppercase “L” (01001100) in the Operand
X and Operand Y fields (BL is the abbreviation of BootLoader). Here is how it should look like:

When the BL “passcode” is recognized, the unit is automatically switched to the Bootload
mode. In this mode, LEDs SAVE and LOAD are turned ON, and only buttons MODE, SAVE and
LOAD are active.

ALT

DIR

SS

RUN

PGM

CARRY

HISTORY

FAST

ADDR SET

MODE

SAVE

--

PAUSE

--

LOAD

+

BREAK

+

ADDR

ADDR

CLOCK

STEP

RUN

DEP+ - - - - --
8 4

OPCODE

+
2

SYNC

+ + + +
1

DIR: DIM

8 4

OPERAND X

CLOCK

- - - - --
2

DIR: BAUD

+
1

+ + + + - - - -
8 4

OPERAND Y

--
2

PAGE DIR: FLASH

+
1

DATA IN

+ + + +

BIN

SEL

M 1 0 M Res3 2 1 03 2

I C S P

V

O U T

I N

T R

0x01000 0x0D000

ALT DIR

SS

RUN

PGM

CARRY

HISTORY

FAST

ADDR SET

MODE

SAVE

--

PAUSE

--

LOAD

+

BREAK

+

ADDR

ADDR

CLOCK

STEP

RUN

DEP+

UART 9600, N, 8, 1

Internal Flash Memory

35

Supplyframe, Inc.

Synthetic Instructions or Pseudoinstructions are instructions which are not present in the
regular instruction set, so they have to be synthesized using existing (naitive) instructions. Some of
sytnetic instructions need more than one naitive instruction to synthesize the new one.

SYNTHETIC INSTRUCTIONS

 RLC RX, RY

SL RX, RY

LSR RY

CPL R0

 CPL RX, RY

NEG RX, RY

NOP

MOV RX,RY

ADDC RX, RY

MOV RX,RY

ADD RX, RY

 AND R0, 0xF

RRC RY

XOR R0, 0xF

MOV RX, 0xF

SUB RX, RY

 MOV RX, 0

SUB RX, RY

MOV R0, R0

Non-existing instruction Replace with

AUTOMATIC OFF

There is the internal countdown timer which counts independently of all other registers and,
when it reaches zero, it turns the unit off, in the same way as the button command OFF should do.
The upper nibble of the timer is in the SFR area, at the address 0xF9, with the symbol name
AutoOff.

Although Synthetic Instructions are generally the good replacement for some non-existing
instructions, care should be taken about how they affect the flags.

Register AutoOff counts in the 10 minute resolution. It is readable and writeable, so when the
processor writes a number in the 0-15 range, the unit will be turned of automatically in 10×N
minutes. Writing 0 to the register switches the unit momentarilly, and writing 15 will switch it off in
150 minutes (2.5 hours).

At the Master Reset and ON command (button ON-OFF pressed while the unit is OFF), this
register is preset to 2 (binary 0010). That means that the unit will be switched OFF after 20 minutes
if no other button is pressed in the meantime. At every button press (while the unit is ON), value 15
(binary 1111) is written to AutoOff register, so it will be switched OFF after 2.5 hours of total
inactivity.

Sometimes it is required that the program works longer time without human supervision or
intervention. The simple way to solve this problem is to put the instruction which writes 1111 or
some other value in the register AutoOff, in the main program loop.

Rotate Left RY through Carry

Shift Left RY

Logical Shift Right RY

Complement R0

Negate RY, write to RX

No Operation

Complement RY, write to RX

Note: Result is in RX

Note: Result is in RX

Note: Any Register
except R12 and R13

Special Modes

36

Note: Result is in RX

Note: Result is in RX

Supplyframe, Inc.

00

10

20

30

40

50

60

70

80

90

A0

B0

C0

D0

E0

F0

0 1 2 3 4 5 6 7 8 9 A B C D E F

JSR PCL PCM PCHR0 R1 R2 R3 R4 R5 R6 R7 R8 R9

STACK

Special Function Registers

Alternate Register Set

G
eneral P

urpose D
ata R

am

F
L

O
A

T
IN

G
 D

IS
P

L
A

Y
 W

IN
D

O
W

(i
n
 t
h
is

 e
xa

m
p
le

, P
a
g

e
=

0
1
0
1

)

P
A

G
E

P
A

G
E

+
1

OUT IN

General Purpose Registers Special Purpose Registers

Data Memory Organization (simulated processor)

Note: this is the representation of the Data Memory for the hypothetical simulated
 processor, not the system processor PIC24FJ256GA704.

37

Supplyframe, Inc.

Memory Organization (system processor)

Note: this is the representation of the Program Memory for the system processor
 PIC24FJ256GA704, not the hypothetical simulated processor.

0x00200

0x001BE

0x01000

0x0D000

0x19000

0x1A000

0x1B000

0x1C000

0x1D000

0x1E000

0x1F000

0x20000

0x21000

0x22000

0x23000

0x24000

0x25000

0x26000

0x27000

0x28000

0x29000

0x2A000

0x2AF00
0x2AFFE

 System Segment

Bootloader

 Firmware

 (Main)

 Firmware
(Backup)

 Unused

Flash Storage 0

Flash Storage 1

Flash Storage 2

Flash Storage 3

Flash Storage 4

Flash Storage 5

Flash Storage 6

Flash Storage 7

Flash Storage 8

Flash Storage 9

Flash Storage 10

Flash Storage 11

Flash Storage 12

Flash Storage 13

Flash Storage 14

Flash Storage 15

Unused
System Config Words

Low-Level
command Save

Low-Level
command Load

(Bootload)

UART

System Program
Memory (256 K)

System SFR

Data Memory

Housekeeping

Program Memory

Unused

Rx Buffer

System Stack

System Data
Memory (16 K)

0x0000

0x0800

0x0900

0x2000

0x4000

0x4600

0x4700

0x47FE

Regular
command
Save to
Addr 3

Regular
command
Load from

Addr 9

Regular
command
Save to

Serial Port

Regular
command
Load from
Serial Port

RX
TX

Auto Backup
before Load(areas not in scale)

(areas not in scale)

38

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38

